
Documentation and description of the ISP Go Filtering Server API methods.

1. Architecture and system requirements
2. Before installation
3. Installation
4. Configuration
5. Examples of API requests
6. Backup and restore
7. ISP-Go slave server
8. Migrating from previous versions
9. ISP Go API

Archived: ISP Go
Content Filtering
Platform (Sales
Discontinued)

ISP Go solution for Internet Service Providers consists of three components
• Filtering DNS Server
• Web application ‘Block page’
• Web application ‘ISP Go API’ to control and manage user’s settings and integrate the whole ISP
Go solution with ISP’s systems.

There are dependencies on the external software packages exist:
• Nginx is used as a reverse proxy for the block page and ISP Go API
• Redis is used as storage
• Rsync is used to download updates for domains database from SafeDNS

When a user enables a content filtering service, an ISP should set the address of the ISP Go server
as the default DNS on the user’s computers or devices (via DHCP, connection scripts, and so on) or
forcefully redirect all DNS requests from the such user to the ISP Go server.

Using the ISP-Go API (special HTTP requests executed from the provider's scripts) this DNS server is
informed about which categories of sites should not be shown to the user. The API also supports
individual custom black and white lists and their global variants, which are valid for all users.

If a user types in the browser address of a prohibited site, the filtering DNS server will respond to a
DNS packet from the IP address of the block page, then the browser will load the block page. The
block page shows a reason why access to this domain is blocked. The block page design is
customizable.

The server on which the ISP-Go service can be deployed and tested with up to 100 users must
meet the following minimal requirements:

Architecture x86-64
Debian 8, 9 or 10 amd64 installed
2GB RAM
1.6 GHz 1-core CPU
20 GB of free disk space
100 Mbit\s network card

1. Architecture and system
requirements

Minimal system requirements:

Average usage of the ISP-Go filtering service covers a few thouthands requests per second. To
ensure this performance should meet recommended system requirements.

Architecture x86-64
Debian 8, 9 or 10 amd64 installed
2GB RAM
2 GHz 4-cores CPU
80 GB of free disk space
1 Gbit\s network card

High performance usage of the ISP-Go filtering service covers ~0.5 million requests per second or
more. To ensure this performance should meet recommended system requirements.

Architecture x86-64
Debian 8, 9 or 10 amd64 installed
8 or more GB RAM
2 GHz 8-cores CPU or more
160 GB or more of free disk space
2.5 Gbit\s network card or two 1 Gbit\s network cards

Currently, ISP Go is distributed as a deb-package for amd64 architecture.

For the functioning of the filtering server, an ISP should already have a standard recursive caching
DNS server. Bind9 or Unbound with the default settings on the other server is well suited, or you
can put one of these DNS servers on the same server as ISP Go and configure it to listen only to the
address 127.0.0.1.

The filtering DNS server (isp-go-dnsproxy) transfers all non-blocked queries to the caching server
and does not cache any data itself. It is possible to pass queries of all ISP’s users (even those for
which the filtering service is not enabled) through the filtering DNS server without filtering or with
filtering of some default categories.

The "Block page" and "ISP-Go API" web applications are designed as separate daemons, each of
them listens to its own port at 127.0.0.1. To transfer requests from the external networks to these
web applications, Nginx is used, Nginx listens to port 80 on the external network interface.
Distribution of requests across these web applications is based on the header "Host:" in HTTP
requests. All requests with a dedicated hostname for ISP Go API are transferred to the ISP Go API,
while all other requests are transferred to the block page.

A provider should have any entity (billing, authentication system), which knows the
correspondence between internal IP addresses and end users. A prerequisite for the
implementation of the ISP Go solution for ISP is the possibility in the existing ISP’s systems to run a

Recommended system requirements:

High performance system requirements:

script when an IP address is issued to a user and (preferably) when the user logs off. Also, ISP
should have a specialist who can write such scripts that will invoke SafeDNS ISP Go API on these
events (user’s login and log off).

A server on which isp-go-dnsproxy is installed should be able to send HTTP POST requests to
licensing control server on the address www.safedns.com. The absence of such requests is a
violation of the license.

ATTENTION!!! isp-go-dnsproxy always rejects non-recursive DNS queries. This is done to
eliminate the possibility of an attack like “DNS loop” when isp-go-dnsproxy and Bind transmit
requests from one to another without end. Since Bind and other DNS servers always
generate non-recursive DNS queries, browsers, and other DNS clients generate only
recursive ones, then the loop will be broken. This, however, means that the configuration like
“Bind with multiple zones on 127.0.0.1, isp-go-dnsproxy on the external address, and this
external address is in NS records in these zones” is unworkable and strongly discouraged. It
is not a bug but deliberately introduced limited functionality.

After you installed the Debian amd64 OS please run the following commands. All commands must
be executed by the root user.

Install SSH and iptables if they are not installed yet

Using iptables, block access to port 53 (both UDP and TCP) from networks that do not
belong to the provider. A minimal example for an ISP with a 192.168.5.0/24 network:

You need to make iptables rules automatically apply after a server reboot. One way to
achieve this is to install the package iptables-persistent:

Save the rules:

2. Before installation
The ISP-Go server can be installed on Debian Jessie/Stretch/Buster, choose the amd64
packet. 32bit computers are not supported, arm64, i386, and other packets are not
supported.

Please make sure that the standard repositories are added to the /etc/apt/sources.list, as this
will be required for installing additional ISP Go components (nginx, redis, etc.).

apt-get install ssh iptables

iptables -A INPUT -p udp --dport 53 ! --src 192.168.5.0/24 -j DROP

iptables -A INPUT -p tcp --dport 53 ! --src 192.168.5.0/24 -j DROP

It is impossible to automate this step, because the provider may have some ready-made
script for configuring the firewall, and it is a bad idea to add rules blindly on top of it.

apt-get install iptables-persistent

service netfilter-persistent save

Installation Script

To install ISP Go, save, grant execution rights, and then run the script below.

Or execute the commands given in the script in the same sequence in the command line manually.

Creating an installation script

Open a text editor that is convenient for you (Nano will be used in the example):

Copy the commands from the example above into it and save it.

Grant the right of execution for the created script, and then run it using the username and
password provided to you by the manager.

In the process of installation the following configuration files will be created:

/etc/isp-go/config.ini – components configuration

3. Installation

#!/bin/bash

LOGIN=$1

PASS=$2

wget https://$LOGIN:$PASS@mirror.safedns.com/repo/ispgo/isp-go-frontend_0.11_all.deb

https://$LOGIN:$PASS@mirror.safedns.com/repo/ispgo/isp-go_1.2.1_amd64.deb

apt update

apt install -y curl daemon dbconfig-common rsync redis-server nginx postgresql nodejs

dpkg -i isp-go_1.2.1_amd64.deb isp-go-frontend_0.11_all.deb

nano install.sh

chmod +x install.sh

./install.sh login password

/etc/nginx/conf.d/log_format.conf – configuration of the block page logs format
/etc/nginx/sites-available/isp-go-api – virtual host for handling API requests
/etc/nginx/sites-available/isp-go-blocked – blockpage virtual host

All files should be manually configured to finish the ISP-Go installation.

Set the maximum size of memory allocated for data storage and policy of work when this limit will
be achieved in /etc/redis/redis.conf the file. To prevent loss of data you should use these settings:

To apply the settings restart Redis server service:

All the modules read the same configuration file /etc/isp-go/config.ini
The file consists of several sections.

[dnscache] section

This section is used by isp-go-dnsproxy and contains only one key - forward. As a value, you
should set an IP address and a port of caching DNS server which will be used to resolve all non-
blocked DNS requests.

Example:

[dnscache]

forward = 8.8.8.8:53

[proxy] section

[proxy] section

4. Configuration
Redis configuration

maxmemory 2GB

maxmemory-policy noeviction

service redis-server restart

ISP Go modules configuration

[dnscache] section

This section is used by isp-go-dnsproxy and contains listen blockpage-ip, log, and PID keys.
The ‘Listen’ key contains an IP address and a port on which isp-go-dnsproxy should get DNS
requests from users. It can be duplicated to accept requests on several addresses at once, for
example, IPv4 and IPv6 at the same time. The number of keys, as well as the number of
listening addresses, is unlimited

blockpage-ip key contains an IP address of a block page, which should be passed to users in
answers to blocked requests. This is the IP address where Nginx accepts requests to the block
page. In general, case when filtering DNS server and Nginx are on the same server you should
set for this key the same IP address as for the listening key. The key can be duplicated to
specify an alternative address for the block pages, for example, for IPv6. It is allowed to use at
least one key only for A redirects or only AAAA packets, but no more than two to support both
IP versions.

Example:

log, pid keys contain the absolute path to the log file and PID file accordingly. To prevent
loss of compatibility with init scripts from the ISP Go package you should not change the
path to the PID file.

[proxy]

listen = 192.168.5.1:53 ; IPv4

listen = [4321:a:bcde:1::2020]:53 ; IPv6

blockpage-ip = 192.168.5.1 ; IPv4 to forwarding A

blockpage-ip = abcd:1234:zyxw::9876 ; IPv6 to forwarding AAAA

log = /var/log/isp-go/isp-go-dnsproxy.log

pid = /var/log/isp-go/isp-go-dnsproxy.pid

[datafiles] section

[datafiles] section

This section contains 'path', 'file', 'cats' keys. ‘file’ key can be used several times in this
section.

The ‘path’ key contains the absolute path to the directory with the SafeDNS domain database.
Files, that database is made of, should be enumerated in the ‘file’ keys. The order of these
keys is important for correct work. Each top-listed file is processed as a correction to all bottom-
listed files. To maintain the correct work of the database we prohibit the change of default
values for these keys.

The ‘cats’ key contains the absolute path to the JSON file with the list of supported categories.
You cannot change this file, because all changes made to it, will be lost on the ISP Go package
update. If you need to hide some categories or translate them to some other language you
should create a copy of the catgroups.json file and make all changes in the copy. The
numbers of the categories should not be changed because they are linked to the content of the
master database of SafeDNS.

Example:

[datafiles]

path = /var/lib/isp-go/filter/

file = host2cat-fast.dat file = host2cat.dat

cats = /usr/share/isp-go/config/

[blockpage] section

[blockpage] section

This section is used by the isp-go-blockpage application and contains 'listen', 'templates', 'log'
, and 'pid' keys.
‘listen’ key contains an IP address (usually 127.0.0.1) and a port that isp-go-blockpage daemon
listens on for HTTP requests to block page.

The ‘templates’ key contains the absolute path to the directory with templates of block page.
Do not change templates installed with the package, because all changes made will be lost on
the ISP Go package update. We recommend copying the whole directory /usr/share/isp-
go/templates and changing templates in this copy.

‘log’ and ‘pid’ keys contain the absolute path to log and PID files accordingly. To prevent loss
of compatibility with init scripts from the ISP Go package you should not change the path to
pidfile.

Example:

Daemon isp-go-blockpage does not accept requests from users. All requests should be
passed through Nginx.

[blockpage]

listen = 127.0.0.1:8081

templates = /usr/share/isp-go/templates/

log = /var/log/isp-go/isp-go-blockpage.log

pid = /var/run/isp-go/isp-go-blockpage.pid

[api] section

[api] section

This section is used by the web application isp-go-api and contains 'listen', 'log', and 'pid'
keys.
‘listen’ key contains an IP address (usually 127.0.0.1) and a port that isp-go-api daemon
listens on for HTTP requests to API. An IP address or a port should be different from the set in
the [blockpage] section

Example:

Listening on an externally accessible IP address will be a security problem. The isp-go-api
daemon does not contain any authorization mechanisms, so anyone who can send a
request can make any changes to user settings (including someone else's). To prevent
such a situation, it is recommended to use the IP address 127.0.0.1 here and to
implement external access (with authorization) at the Nginx level.

[api]

listen = 127.0.0.1:8080

log = /var/log/isp-go/isp-go-api.log

pid = /var/run/isp-go/isp-go-api.pid

[common] section

The section is used by all three daemons and contains the keys 'redis-ip' and 'redis-port'.

The 'redis-ip' and 'redis-port' keys specify which Redis server the daemons that are part of
ISP Go should connect to. For performance reasons, it is recommended to run the Redis server
on the same machine where ISP Go is installed.

[common] section

Example:

[common]

redis-ip = 127.0.0.1

redis-port = 6379

Enabling ISP Go services

To enable ISP Go services automatic startup please run the following commands:

Applying settings

After changing the configuration file you should restart all ISP Go services:

Nginx is used in ISP Go for the following tasks:
• separation of API requests from requests to the block page and to the administrative web
interface
• proxying requests to corresponding web applications
• restricting access to the API and to the administrative web interface

For correct separation of requests, you need to register the domain name used to manage filtering
through the API in the server_name directive of the file /etc/nginx/sites-available/isp-go-api instead
of the value 'api.ispgo'.

All other requests will go to the virtual host configured in the file /etc/nginx/sites-available/isp-go-
blocked due to the presence of the default_server modifier in the listen directive.

You can create additional virtual hosts with the following exceptions:
• each additional virtual host should contain the server_name directive
• default_server option cannot be used

systemctl enable isp-go-dnsproxy

systemctl enable isp-go-blockpage

systemctl enable isp-go-api

service isp-go-dnsproxy restart

service isp-go-blockpage restart

service isp-go-api restart

Nginx configuration

• HTTPS usage is not recommended, because users who are requesting blocked websites via
HTTPS will get browser warnings of an invalid SSL certificate.

IP addresses and ports in the proxy_pass directive in Nginx configuration files should correspond
with IP addresses and ports on which web applications were launched (see listen key in /etc/isp-
go/config.ini file).

API access is restricted using the allow and deny directives. Directives are processed in turn from
top to bottom until the first match. The default configuration allows access only from the address
127.0.0.1. You must allow access from the server where the billing system is installed.

To apply changes reload Nginx:

In the installation process demo version of the database will be copied to /var/lib/isp-go/filter/
folder. For production deployment, you should replace the demo version with the full one and
configure automatic updates.
The domain database is updated by cron using rsync. You need an ssh key to authorize access to
the safedns.com server. To get auto-update to perform the following steps:

Generate an ssh key that will be used to download domain database updates:

As a result, the files id_rsa (private key, which must be kept strictly secret and not lost) and
id_rsa.pub (public key) will be created.

Send the created id_rsa.pub file to the technical support team at support@safedns.com Don't need
to send id_rsa antwhere!

The technical support team will notify you when the ssh key will be authorized on the SafeDNS
server.

Copy the id_rsa and id_rsa.pub files to the directory where the update script is looking for them:

In no case, access should be allowed to the API from untrusted (including user) systems,
because if access to the API is provided an attacker can change any filtering settings for any
users.

service nginx reload

Database update

mkdir safedns-key

cd safedns-key

ssh-keygen -t rsa -N "" -f id_rsa

mailto:support@safedns.com

Wait for 1 hour and make sure that host2cat.dat and host2cat-fast.dat files in the directory
/var/lib/isp-go/filter have been updated.

You can also update the data-files manually, just run the following commands:

To do this, you need to allow outgoing connections from the isp-go server to www.safedns.com on
TCP port 443 and perform all the steps from Setting up automatic updating of the domain
database (previous part).

To check the correctness of sending statistics on the isp-go server, please perform:

OK is the correct answer to this command.

By default, ISP Go comes with a minimal, strict, and ascetic design of the lock page. To change this
design, you need to edit the HTML templates that are located at /usr/share/isp-go/templates/,
where base.html – is the main template file, and the rest are inherited from it. The syntax of
templates is described in the Go language guide:

• https://golang.org/pkg/text/template/
• https://golang.org/pkg/html/template/

The following variables are available:

• Domain: requested hostname in the Host field of HTTP request header
• Cats: array with category names of the blocked websites. This variable is allowed to use with the
blocked_by_category.html

mkdir -p -m 0755 /var/lib/isp-go/.ssh

cd safedns-key

cp id_rsa id_rsa.pub /var/lib/isp-go/.ssh/

chown -R isp-go:isp-go /var/lib/isp-go/.ssh

su isp-go -c 'rsync -rtv --progress safedns-isp@safedns.com:host2cat.dat ~/filter/'

su isp-go -c 'rsync -rtv --progress safedns-isp@safedns.com:host2cat-fast.dat ~/filter/'

The server should have access to www.safedns.com on TCP port 443.

Setting up sending the statistics

curl -f -X POST --data "key=`cut -d ' ' -f 2 /var/lib/isp-go/.ssh/id_rsa.pub | base64 -d |

md5sum | cut -d ' ' -f1`&count=`redis-cli --raw hlen ip`" https://www.safedns.com/isp-kit-dog/

Block page design

https://www.safedns.com
https://golang.org/pkg/text/template/
https://golang.org/pkg/html/template/

template file only.

To add images to a block page we recommend setting a separate virtual host for image storing and
using an absolute URL to an image with tag (example: http://img.isp.com/block-
img.png)

To apply changes restart the isp-go-blockpage service:

It is possible to use the 0.0.0.0 IP address in the listen key of a [proxy] section of the configuration
file if you use caching DNS server installed on another server. In this case, isp-go-dnsproxy will
process requests on all network interfaces.
If you have caching DNS server installed on the same server (and listening on 127.0.0.1 IP
address), you should designate a specific IP address from one of the network interfaces.

Statistics are recorded to a CSV file and imported into the PostgreSQL database every 5 minutes.
Statistics are stored in the database in "raw" and aggregated form. "Raw" statistics are stored for 1
day. Aggregated statistics are stored for 3 months.
The statistics are recalculated every five minutes.

If a user has more than one IP address, then statistics for all addresses are summarized. Likewise
for anonymous users.
The following reports are available:
• number of requests by hours and days for the period;
• number of requests to the top 100 domains;
• detailed statistics by domains and days;
• "Raw" statistics for the last hour.
Statistics are accessed through requests to the ISP Go REST API.

service isp-go-blockpage restart

Peculiarities of listening on specific IP addresses

User activity statistics

After the initial installation, you need to write a script that will change user settings. The settings
are changed using HTTP requests to the ISP Go API. The examples below use curl from the
command line to generate requests.

5. Examples of API requests

Adding and removing user IP

curl -X PUT -d "[\"192.168.5.1\"]" http://api.isp.com/users/aep/ip/

curl http://api.isp.com/users/aep/ip/

curl -X DELETE http://api.isp.com/users/aep/ip/

curl http://api.isp.com/users/aep/ip/

curl -X PUT -d "[\"192.168.5.1\"]" http://api.isp.com/users/aep/ip/

Categories list in json format.

curl http://api.isp.com/categories/

curl http://api.isp.com/categorygroups/

Global white list # Replacing the entire list

curl -X PUT -d '["magazine.com", "feed.com"]' http://api.isp.com/whitelist/

curl http://api.isp.com/whitelist/

Add and remove one record at a time

curl -X POST -d '["magazine.com"]' http://api.isp.com/whitelist/

curl -X DELETE http://api.isp.com/whitelist/feed.com

curl http://api.isp.com/whitelist/

Global black list works similarly

curl http://api.isp.com/blacklist/

Filter configuring:

Complete replacement of the list of blocked categories:

curl -X PUT -d '[3, 4, 5, 11]' http://api.isp.com/users/aep/filter/

Add and remove one category at a time:

curl -X POST -d '[6]' http://api.isp.com/users/aep/filter/

curl -X DELETE http://api.isp.com/users/aep/filter/5

curl http://api.isp.com/users/aep/filter/

To enable the mode "Use the white list only" for a user you need to add a root domain to the black
list:

To remove the root domain, use:

An example of a PHP script for accessing the API

<?php

// The examples file requires PHP curl extension installed

// Address of the API server

$server = 'http://api.isp.com';

function api_request($url, $method = 'GET', $data = null) {

	$ch = curl_init($url);

	curl_setopt ($ch, CURLOPT_HEADER, 0);

	curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

black and white lists of users:

complete replacement:

curl -X PUT -d '["dark.com", "orange.com", "red.com", "cyan.com"]'

http://api.isp.com/users/aep/blacklist/

Add and remove one domain at a time:

curl -X POST -d '["antigreen.com"]' http://api.isp.com/users/aep/blacklist/

curl -X DELETE http://api.isp.com/users/aep/blacklist/orange.com

curl http://api.isp.com/users/aep/blacklist/

White list works similarly

curl http://api.isp.com/users/aep/whitelist/

curl -X POST -d '["-"]' http://api.isp.com/users/aep/blacklist/

curl -X DELETE http://api.isp.com/users/aep/blacklist/-

There is a non-removable and non-editable whitelist with the highest priority, which is not
accessible through any administration interface, which includes safedns.com addresses,
antivirus update sites, Windows update sites, etc.

	curl_setopt($ch, CURLOPT_CUSTOMREQUEST, $method);

	if (!is_null($data)) curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

	$out = curl_exec($ch);

 	$return_code = curl_getinfo($ch, CURLINFO_HTTP_CODE);

 	switch ($return_code) {

 case 200:

 if (strlen($out)) return json_decode($out);

 else return "OKrn";

 break;

 case 400:

 throw new Exception('Bad request');

 break;

 default: throw new Exception('Error');

 }

}

/*

User record is created automatically when trying

To record any information about the user

*/

// Add to a user with an identifier aep ip-address 192.168.5.1

print api_request($server."/users/aep/ip/", 'POST', '["192.168.5.1"]');

// Replace the list of ip-addresses of the user aep to 192.168.5.1, 192.168.5.2

print api_request($server."/users/aep/ip/", 'PUT', '["192.168.5.1", "192.168.5.2"]');

// Delete ip-addresses 192.168.5.1 from the list of addresses of the user aep

print api_request($server."/users/aep/ip/192.168.5.1", 'DELETE');

// Return a list of ip-addresses for the user aep

$result = api_request($server."/users/aep/ip/", 'GET');

var_dump($result);

// Delete the whole list of ip-addresses of the user aep

print api_request($server."/users/aep/ip/", 'DELETE');

?>

Set periodic backup of directories:
/etc/isp-go

/var/lib/isp-go/.ssh

Set periodic backup of Redis database (you can get file name and path from the dbfilename and
dir parameters of /etc/redis/redis.conf configuration file).

Restore process:

• Install ISP-Go. During the installation process, specify 127.0.0.1 as the IP from which access to
the API is allowed in the /etc/nginx/sites-available/isp-go-api file. Do not make API requests until
recovery is complete;
• Restore Redis database:
 1. Stop Redis service on the new instance - sudo service redis-server stop
 2. Copy the dump.rdb file to /var/lib/redis/ on the new instance
 3. Start Redis service on the new instance - sudo service redis-server start
• Restore files to /etc/isp-go and /var/lib/isp-go/.ssh from backup directories;
• Restart redis-server, isp-go-dnsproxy, isp-go-api and isp-go-blockpage ;

6. Backup and restore

Install second (slave) ISP-Go server. Make sure that isp-go-api is launched on the master server
only. All requests to the API should be sent to the master server.

To prevent isp-go-api launch on the slave server and block requests proxying, execute commands:

Configure replication between Redis instances. To do this, you need to allow the main server to
listen at network addresses other than 127.0.0.1 by setting the bind parameter in
/etc/redis/redis.conf to 0.0.0.0.

or, if needed, you can set it to an IP or IPs of the server

To apply new settings restart Redis on the master server:

Consider an example where the master server has an IP address of 192.168.5.100 and the slave
server has an IP address of 192.168.5.200. In this case, security on the main server is ensured by
this iptables rule:

7. ISP-Go slave server

service isp-go-api stop

update-rc.d isp-go-api disable

rm -f /etc/nginx/sites-enabled/isp-go-api

service nginx restart

bind 0.0.0.0

bind 127.0.0.1 192.168.5.100 10.0.0.100

service redis-server restart

You should restrict access to port TCP/6379 on the master server which is used by Redis to
listen. The port should be closed using iptables and stay accessible only for the loopback
interface (needed for isp-go-dnsproxy and isp-go-blockpage) and the slave server. An attacker,
having access to the Redis server via TCP, could change any setting of any user, or even
worse, force Redis to take up all available memory.

iptables -A INPUT ! -s 192.168.5.200 -p tcp --dport 6379 ! -i lo -j DROP

To save this rule, so that it recovers after a reboot, run the command:

Add to the configuration file /etc/redis/redis.conf on the slave server following parameters at the
end of the document:

Then restart Redis on the slave server to apply the settings:

service netfilter-persistent save

slaveof <masterip> <masterport>

service redis-server restart

There are two utilities for migrating from previous versions:

isp-go-dumpdb

isp-go-loaddb

The first one creates a dump of the user base through the API, and the second one downloads this
dump.

Example:

Where file is the path to the file where the database dump will be written, and server is the name
of the host where the API is located.
API availability can be checked by command:

If the error E403 Forbidden occurs, open access in following the configuration files:

/etc/nginx/sites-available/isp-go-api for ISP-Go

/etc/apache2/sites-available/isp.comf for ISP-Kit

8. Migrating from previous
versions

isp-go-dumpdb -file=./dump.json -server=oldapi.myserver.com

isp-go-loaddb -file=./dump.json -server=newapi.myserver.com

curl -v http://api.myserver.com/active_users/

Don't forget to restart services after any chages made in configuration files.

Users

[user_id] is the ISP's user ID. It can contain the characters A-Z, a-z, 0-9 underscore and dash.

The maximum length is 32 characters.

A new user is created when trying to create a property for him: specify categories, assign ip.

If a user is not found returns HTTP response code 404.

Response format:

Active users are users which have at least one IP address.

Response format:

Creating a user

POST /users/[user_id]/ip/[“ip_address”]

Deleting a user

DELETE /users/[user_id]

Check a user existence:

HEAD /users/[user_id]

Getting a list of active users

GET /active_users/

["geek", "bugtest", "hammer"]

Getting a list of all users

GET /users

9. ISP Go API

By default, returns first 100 users.

Start and stop parameters indicate that should be returned users with user_id from 100 to 200.

Response format:

[{

 "name": "geek",

 "safesearch": "off",

 "safeyoutube": "off",

 "status": "enabled",

 "filter": [1, 2],

 "ip": ["192.168.5.6", "2001:0db8:85a3:0000:0000:8a2e:0370:7334"],

 "whitelist": ["facebook.com", "google.com"],

 "blacklist": []

},{

 "name": "bugtest",

 "safesearch": "off",

 "safeyoutube": "on",

 "status": "enabled",

 "filter": [1, 2, 3],

 "ip": ["192.168.5.8"],

 "whitelist": ["reddit.com", "google.com"],

 "blacklist": []

}]

GET /users?start=100&stop=200

Search a user

GET /search/user1

[{

 "name": "user1",

 "safesearch": "off",

 "safeyoutube": "off",

 "status": "enabled",

 "filter": [],

 "ip": [],

 "whitelist": [],

The search is possible by IP or username. Wildcards or masks can be used in the search.

Returns all users which IP address starts with 192.168.0.

Returns all users which name starts with user

Response format:

 "blacklist": []

}]

GET /search/192.168.0.*

GET /search/user*

GET user’s information

GET /users/[user_id]

{

 "name": "[user_id]",

 "safesearch": "off",

 "safeyoutube": "off",

 "status": "enabled",

 "filter": [3, 4, 5, 6],

 "ip": ["192.168.5.6", "2001:0db8:85a3:0000:0000:8a2e:0370:7334"],

 "whitelist": ["reddit.com", "google.com"],

 "blacklist": []

}

Update user’s information

PUT /users/[user_id]

Content-type: application/json

{

 "name": "[user_id]"

 "safesearch": "on",

 "safeyoutube": "off",

This feature allows users to suspend filtering without settings reset.

 "status": "enabled",

 "filter": [2, 3, 4, 5],

 "ip": ["192.168.5.8", "2001:0db8:85a3:0000:0000:8a2e:0370:7334"],

 "whitelist": ["docs.google.com", "atlassian.net"],

 "blacklist" ["youtube.com", "pornhub.com"]

}

Disable filtering

POST /users/[user_id]/status/disabled

Content-type: application/json

Enable filtering

POST /users/[user_id]/status/enabled

Content-type: application/json

SafeSearch

Enabling safe search by default for a user

PUT /config/

Content-type: application/json

{ "safesearch": true }

Disabling safe search by default for a user

PUT /config/

Content-type: application/json

{ "safesearch": false }

Enabling safe search by default for users

PUT /userconfig/

Content-type: application/json

{ "safesearch": true }

Disabling safe search by default for users

PUT /userconfig/

Content-type: application/json

{ "safesearch": false }

Enabling safe Search for [user_id]

POST /users/[user_id]/safesearch/on

Content-type: application/json

Disabling safe Search for [user_id]

POST /users/[user_id]/safesearch/off

Content-type: application/json

PUT /userconfig/

Content-type: application/json

{ "safeyoutube": true }

Safe Youtube

If this option is enabled, the user will be automatically redirected to the safe version of
YouTube.

Enabling safe YouTube by default

PUT /config/

Content-type: application/json

{ "safeyoutube": true }

Disabling safe YouTube by default

PUT /config/

Content-type: application/json

{ "safeyoutube": false }

Enabling safe YouTube by default for users

PUT /userconfig/

Content-type: application/json

{ "safeyoutube": true }

Disabling safe YouTube by default for users

PUT /userconfig/

Content-type: application/json

{ "safeyoutube": false }

User addresses

Get the user’s IP address

GET /users/[user_id]/ip/

Response format:

or a list of IP addresses:

or a list of IP addresses:

["192.168.5.6", "2001:0db8:85a3:0000:0000:8a2e:0370:7334"]

Add user’s IP address (will be added to existing)

POST /users/[user_id]/ip/

Content-type: application/json

["127.0.0.1"]

POST /users/[user_id]/ip/

Content-type: application/json

["127.0.0.1", "2001:0db8:85a3:0000:0000:8a2e:0370:7334"]

Update user’s IP address (existing IP address will be replaced)

PUT /users/[user_id]/ip/

Content-type: application/json

["127.0.0.1"]

PUT /users/[user_id]/ip/

Content-type: application/json

["127.0.0.1", "2001:0db8:85a3:0000:0000:8a2e:0370:7334"]

Delete all user’s IP addresses (disables filtering for the user)

DELETE /users/[user_id]/ip/

Deleting one of the user's IP addresses

DELETE /users/[user_id]/ip/[127.0.0.1]

General information

In order to get categories in the language other than the default one, you should add the HTTP
header Accept-Language to the request with language indication (for example pt_BR).

Response format:

Get the grouped list of categories with the names and identifiers of
the categories

GET /categorygroups/

[{

 "group": "Security",

 "categories": {

 "3": "Virus Propagation",

 "4": "Phishing",

 ...

 }

}, {

 "group": "Illegal Activity",

 "categories": {

 "6" : "Drugs",

 ...

 }

},

...

]

Get a list of categories with names and identifiers of categories

GET /categories/

Response format:

Response format:

{

 "3":"Virus Propagation",

 "4":"Phishing",

 …

}

Check a website

GET /site/facebook.com

{

 "domain": "facebook.com",

 "categories": [29],

}

Categories for blocking

Adding a category to the list of blocked by default

PUT /config/

Content-type: application/json

{ "filter": [1, 2] }

Removing a category from the blocked by default

PUT /config/

Content-type: application/json

{ "filter": [] }

Response format:

Adding a category to the list of blocked by default for users

PUT /userconfig/

Content-type: application/json

{ "filter": [1, 2] }

Removing a category to the list of blocked by default for users

PUT /userconfig/

Content-type: application/json

{ "filter": [] }

Get a list of user’s categories

GET /users/[user_id]/filter/

[1, 2, 3]

Add category to user’s list

POST /users/[user_id]/filter/

Content-type: application/json

[1, 2]

Save new user’s list of categories

PUT /users/[user_id]/filter/

Content-type: application/json

[1, 2, 3]

Disable one category for a user

DELETE /users/[user_id]/filter/2

Disable all categories for a user

DELETE /users/[user_id]/filter/

Black list

Response format:

Get the user’s black list

GET /users/[user_id]/blacklist/

["google.com", "facebook.com"]

Add a domain to the user’s black list

POST /users/[user_id]/blacklist/

Content-type: application/json

["www.facebook.com"]

Replace to new black list

PUT /users/[user_id]/blacklist/

Content-type: application/json

["www.facebook.com"]

Remove a domain from the user’s black list

DELETE /users/[user_id]/blacklist/facebook.com

For the user to work in the "everything is prohibited except what is explicitly whitelisted" mode,
you need to blacklist the root domain:

To delete the root domain from the blacklist:

Delete the user’s black list

DELETE /users/[user_id]/blacklist/

Setting the "White list only" option

POST /users/[user_id]/blacklist/

Content-type: application/json

["-"]

DELETE /users/[user_id]/blacklist/-

White list

Response format:

Get the user’s white list

GET /user/[user_id]/whitelist/

["google.com"]

Add domain to a user’s white list

POST /users/[user_id]/whitelist/

Content-type: application/json

["google.com"]

Replace the user’s white list

PUT /users/[user_id]/whitelist/

Content-type: application/json

["google.com"]

Remove a domain from the user’s white list

DELETE /users/[user_id]/whitelist/google.com

Delete the user’s white list

DELETE /users/[user_id]/whitelist

Global blacklist (takes precedence over user lists)

Response format:

Get the global black list

GET /blacklist

["google.com"]

Add domain to global black list

POST /blacklist/

Content-type: application/json

["www.google.com"]

Replace to new global black list

PUT /blacklist/

Content-type: application/json

Setting the option "The global whitelist only"

For the user to work in the "everything is prohibited except what is explicitly whitelisted" mode,
you need to blacklist the root domain:

To delete the root domain from the blacklist:

["www.google.com"]

Remove a domain from the global black list

DELETE /blacklist/google.com

Delete the global black list

DELETE /blacklist/

POST /blacklist/

Content-type: application/json

["-"]

DELETE /blacklist/-

Global white list

Response format:

Get the global white list

GET /whitelist/

["google.com"]

Add a domain to the global white list

POST /blacklist/

Content-type: application/json

["www.google.com"]

Replace to new global white list

PUT /blacklist/

Content-type: application/json

["www.google.com"]

Remove a domain from the global white list

DELETE /whitelist/google.com

Delete the global white list

DELETE /whitelist/

Reports

Where [date_from], [date_to] are dates in YYYY-MM-DD format.

User activity by hour

GET /users/[user_id]/stat/activity/hour?from=[date_from]&to=[date_to]

{

 "labels": ["2022-06-29 14:00:00", "2022-06-29 15:00:00"],

 "datasets": [{

 "label": "Requests",

 "data": [375, 275]

 },{

 "label": "Blocks",

Where:
labels - a list of timestamps,
datasets - a list of objects containing data for charts and legends,
data - a list of values corresponding to timestamps,
label - chart name (Requests - number of requests, Blocks - number of blocks).

Where [date_from], [date_to] are dates in YYYY-MM-DD format.

Where:
labels - a list of timestamps,
datasets - a list of objects containing data for charts and legends,
data - a list of values corresponding to timestamps,
label - chart name (Requests - number of requests, Blocks - number of blocks).

 "data": [13, 0]

 }]

}

User activity by day

GET /users/[user_id]/stat/activity/day?from=[date_from]&to=[date_to]

{

 "labels": ["2022-06-29", "2022-06-30"],

 "datasets": [{

 "label": "Requests",

 "data": [5770, 3456]

 },{

 "label": "Blocks",

 "data": [8, 9]

 }]

}

Domains

GET /users/[user_id]/stat/domains/[filter]?from=[date_from]&to=[date_to]

{

 "labels": ["example.com", "google.com", "asdfg.com"],

Where:
[date_from], [date_to] - dates in YYYY-MM-DD format,
[filter] - can be set to all, www
all - returns all domains,
www - returns only domains start with www
labels - a list of domains,
datasets - a list of objects containing data for charts and legends,
data - a list of values corresponding to timestamps,
label - chart name (Requests - number of requests, Blocks - number of blocks, NXdomain -
number of requests to non-existing domains).

 "datasets": [{

 "label": "Requests",

 "data": [630, 474, 290]

 },{

 "label": "NXdomain",

 "data": [0, 0, 290]

 },{

 "label": "Blocks",

 "data": [630, 0, 0]

 }]

}

Detailed

GET /users/[user_id]/stat/detail?from=[date_from]&to=[date_to]

{

 "timestamps": ["2022-06-29 15:00:00", "2022-06-29 16:00:00"],

 "reports": [{

 "labels": ["clients4.google.com", "www.google.ru"],

 "cats": [[48, 251], [48]],

 "datasets": [{

 "label": "Requests",

 "data": [29, 20]

 },{

 "label": "NXdomain",

 "data": [0, 0]

 },{

 "label": "Blocks",

Where:
[date_from], [date_to] - dates in YYYY-MM-DD format,
timestamps - a list of timestamps,
reports - a list of appropriate intervals reports,
labels - a list of domains,
cats - lists of categories for domains,
datasets - a list of objects containing data for charts and legends,
data - a list of values associated with each domain,
label - chart name (Requests - number of requests, Blocks - number of blocks, NXdomain -
number of requests to non-existing domains).

Full user statistics for the last hour. Updates every 5 minutes.

 "data": [0, 0]

 }]

 },{

 "labels": ["live.github.com", "lb._dns-sd._udp.0.0.200.10.in-addr.arpa",

"ssl.gstatic.com"],

 "cats": [[2], [2], [2]],

 "datasets": [{

 "label": "Requests",

 "data": [73, 48, 48]

 },{

 "label": "NXdomain",

 "data": [0, 48, 0]

 },{

 "label": "Blocks",

 "data": [0, 0, 0]

 }]

 }]

}

Raw statistics

GET /users/[user_id]/stat/raw

{

 "fields": ["created", "nxdomain", "address", "host", "blockedhost", "reasom", "cats",

"blockedcats"],

 "data": [

 ["2016-07-11 17:50:26", "0", "10.200.1.88", "tpc.googlesyndication.com",

"tpc.googlesyndication.com", "4", [2], [0]],

 ["2016-07-11 17:50:26", "0", "10.200.1.88", "tpc.googlesyndication.com",

"tpc.googlesyndication.com", "4", [2], [0]]

]

}

Response codes

200 OK - Successful request

201 Created - Successful element creation request

204 No Content - Successful request with an empty response

400 Bad Request - Invalid request

404 Resource is not found - The resource does not exist

422 Unprocessable Entity - The request does not contain the

500 Internal server error

