
The document contains information about Categorization SDK and describes integration and
interaction with it

Configuration & Integration
Categories
Canonical form of a domain (or URL)
Local database
Example
Error Information

Categorization SDK

This documentation contains the following solutions:

The ability to find the categories of a given URL by searching the local database located
on the user's terminal device (PC, router, embedded device). In this case, an Internet
connection is not required and no network requests are made. This type of database is
called the local database.
The ability to find categories of a given URL using HTTPS access to the SafeDNS cloud. To
find a category of domains an internet connection is required and a username/password is
required as well to get access to the library. But there is no need to have a local database
on the user's computer.
The ability to save URL categories received from the SafeyDNS cloud in the local disk
cache for faster access to them later. The data saved in the disk cache is not deleted after
restarting the computer and restarting the application using this cache.
The ability to cache the received categories of a URL in the computer's RAM to speed up
their subsequent search. The cache sizes can be set during the library assembling.
The ability to receive and install regular updates of the local database categories from the
SafeDNS cloud. Downloading the entire database is available: all categories ~ 1.6GB;
smaller custom builds are also possible.
The performance of the library on average hardware is approximately 60k requests per
second.

The solution is implemented in the programming language "C". It's provided with the user interface
in the form of functions of the "C" programming language. The solution can also be integrated into
a Python project.

The SDK is easy enough to integrate into the final software product developed in the C or C++
programming language. It is also possible to integrate it into the final Python solution.

To use the library, you need to get the library sources from repository here, configure the library,
build and install it.

Necessary utilities to assemble and configure the library:

Configuration & Integration
Introduction

SDK integration into the final product

Configuring the url2cat library

https://www.safedns.com/downloads/liburl2cat.tar.gz

cmake (version 3.15 or higher)
make (version 4.2 or higher)
gcc
sphinx (version 1.8.5 or higher) (module sphinx_rtd_theme)

Necessary libraries (Ubuntu 18 or higher):

openssl-1.1.1s (or 3.0.6)
libssl-dev
pkg-config
libssl-dev

1. Go to the library source directory

2. Configure the library using the command

Or edit according to your needs and run the bash script located in liburl2cat directory -
create_build.sh.

To run the script perform:

Using the following cmake commands you can configure library functions:

URL2CAT_SERVER - request to the SafeDNS server (yes, no)
URL2CAT_DATABASE - request to the local database (yes, no)
URL2CAT_LIBRARY - library assembling type (static & shared)
URL2CAT_MAX_NUMBER_CATEGORY - number of defined categories (Default number: 5)
URL2CAT_HASH_TYPE - Hash type (MD5, SHA256, SHA512. Default type - MD5)
URL2CAT_HASH_LEN- Hash length (full - hash is not truncated before searching in the
database. Half extract the first 8 bytes of the hash. Default length - half)
URL2CAT_CACHE - category entry cache size (dynamic / static)

3. Build the project using the command:

Configuration

cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DURL2CAT_SERVER=yes -DURL2CAT_DATABASE=yes -

DURL2CAT_LIBRARY=static -DURL2CAT_LOCALE=en

sudo chmod +x create_build.sh

./create_build.sh

cmake --build build

4. Copy the following library files to your project:

build_release/lib/liburl2cat.a or build_release/lib/liburl2cat.so
include/url2cat.h

Before using the library, needs to initialize it using the s_url2cat_setting structure. The structure
has the following fields:

cache_size - cache size in bytes (if set to 0 the cache is not used)
db_name - the name of the database
db_download_scheme - protocol for updating the database
db_download_host - database update host
db_download_port - database update port
db_download_path - database update path
db_download_user - login to updating the database
db_download_password - password to updating the database
server_scheme - protocol for connecting to the SafeDNS server
server_host - host of connection to the SafeDNS server
server_port - port for connecting to the SafeDNS server
server_path - path to connect to the SafeDNS server
server_user - login to connect to the SafeDNS server
server_password - password to connecting to the SafeDNS server

For initialization use the function - url2cat_init(s_url2cat_setting * setting)

To get a category use the function:
url2cat_category(char * url, size_t len_url, s_url2cat_category * * category, size_t *
number_category)

where the structure s_url2cat_category has the following fields:

type – the number of category
type_name – the name of category

After finishing using the library you will need to deinitialize it with the command: url2cat_deinit()

The database can be updated while the library is running using the command:
url2cat_database_update(s_url2cat_setting * setting)

A request for recategorization can be sent while the library is running using the command:
url2cat_recategory(char * url, size_t url_size, char * category_name, size_t category_name_size)

Using the library in the project:

Examples of integration the solution into simple projects running on "C" can be found in the
/example directory.

ID Category Description

3 Malware Sites spreading malware

4 Phishing &
Typosquatting Sites deceiving internet users (e.g. fake pages, scams, fraud)

5 Online Ads Advertising systems and banner networks

6 Drugs Sites advertising or selling drugs

7 Tasteless Sites containing excessive amounts of tasteless language or unmoderated forums

8 Academic Fraud Sites with plagiarism, academic fraud, etc.

9 Parked Domains Sites without any content that are temporarily placed at the domain registrar; are often
used for virus propagation

10 Hate &
Discrimination Sites spreading the propaganda of aggression, racism, terrorism

11 Proxies &
Anonymizers Sites containing ways to bypass content filters

12 Botnets & C2C Malicious websites

13 Adult Sites Adult content, mostly about sex but without pornography

14 Alcohol & Tobacco Sites selling or containing information about alcohol and tobacco

15 Dating Dating websites

16 Pornography &
Sexuality Sites containing pornography in any form

17 Astrology Occult and astrology sites

18 Gambling Casinos, lotteries, and other gambling systems

Categories

ID Category Description

19 Child Sexual Abuse
(IWF)

Sites containing child sexual abuse images, criminally obscene adult and child sexual
abuse content from a list compiled by Internet Watch Foundation/IWF (UK)

20 Torrents & P2P Torrent trackers and peer-to-peer networks

21 File Storage File-sharing sites, file archives

22 Movies & Video Online movies and videos

23 Music & Radio Internet radio and music archives

24 Photo Sharing Archives of photos, photo galleries

26 Chats & Messengers Online chats and instant messengers, messaging systems servers

27 Forums Web forums

28 Games Computer and video games websites

29 Social Networks Social networking services (e.g. Facebook)

30 Entertainment Entertainment portals; cafes and restaurants; sites with information about leisure

31 German Youth
Protection

Sites considered unsafe by Federal Department for media harmful to young persons
(BPjM, Germany)

32 Automobile Sites about cars and other types of transport

33 Blogs Systems of mass hosting, personal websites, blogs

34 Corporate Sites Sites of commercial organizations

35 E-commerce Online shops

36 Education Websites of educational institutions, educational portals

37 Finances Sites of banks and other financial institutions

38 Government Official government sites

39 Health & Fitness Sites of hospitals, medical centers, and health care organizations; health portals

40 Humor Humorous and entertaining sites, often tasteless

ID Category Description

41 Jobs & Career Job portals

42 Weapons Websites about weapons and army

43 Politics, Society, and
Law Political news; political parties and organizations; legal organizations; laws

44 News & Media News agencies, media sites

45 Non-profit Sites of non-profit organizations

46 Portals Common portals

47 Religious Sites of religious and anti-religious organizations

48 Search Engines Google, Bing, DuckDuckGo, etc.

49 Computers &
Internet Sites about IT, software, internet, and computers

50 Sports Sites about sports or sports organizations

51 Science &
Technology Scientific organizations sites; science news

52 Travel Sites about tourism and travel

53 Home & Family Sites about home, family, and hobbies

54 Shopping Sites with shopping unrelated to online stores

55 Arts Museums, art portals, and galleries

56 Webmail Webmail systems

57 Real Estate Sites with information about sales and purchases of the real estates

58 Classifieds Classifieds

59 Business Sites about businesses and economics

60 Kids Sites for children

ID Category Description

63 Trackers & Analytics Web analytics systems, including user tracking

65 Child Sexual Abuse
(Arachnid)

Sites containing child sexual abuse material from a list compiled by the Canadian Centre
for Child Protection (CAN) as part of its Project Arachnid

66 Cryptojacking Sites illegally mining cryptocurrencies

67 Online Libraries Sites of online libraries

70 DGA
DGAs are algorithms detected in various malware families, which are used to periodically
generate a large number of domain names that can be used as a default with their
management and control servers.

71 Ransomware Sites spreading ransomware

72 Generative AI Sites of well-known AI services, chatbots, and text/picture generators

100 Contentless
Domains

These sites may lack any meaningful or legitimate content, making their purpose unclear
or unreliable and due to their dubious nature, they pose potential risks to users

URLs of resources are stored in the database in their canonical form, which means that before
requesting a list of categories, the URL needs to be canonicalized. In other words, you need to get
the canonical representation of the URL.

A single URL resource pointer consists of several parts, but we are only interested in two of them:

Domain name (domain)
Path (path)

Here is a random URL as an example:
directory.google.com/example/test.php?key=value&one=1

Where the domain is:
directory.google.com

and this is the URL path:
/example/test.php?key=value&one=1

Since the URL points to a resource, it can be written in various forms and in a variety of ways. For a
direct search in the database, it is necessary to bring all the various forms of URLs pointing to one
resource to one canonical form. This is very important for getting the correct categorization of the
requested URL.

We use the standard version of URL canonicalization from the Google Safe Browsing project
https://developers.google.com/safe-browsing/ with the API
version higher 2.

This project describes techniques for resource identifier canonicalization, examples and algorithms
can be found on the page:
https://developers.google.com/safe-browsing/v4/urls-hashing#canonicalization

Source URL Canonical URL

http://evil.com/foo-bar-baz http://evil.com/foo

Canonical form of a domain
(or URL)

Examples of canonicalization

https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/v4/urls-hashing#canonicalization

http://host/%25%32%35 http://host/%25

http://evil.com/foo-bar-baz http://evil.com/foo

http://test.com/path/../ http://test.com/

As described above, you can get a canonical form of a URL. But due to the nature of URLs, you
cannot rely on one URL. To find the best match for it in the database, you need to generate derived
URLs by alternately discarding parts of the primary URL from the left and right edges.

This is a random URL as an example:
directory.google.com/example/test.php?key=value&one=1

Derived URLs will be as follows:

directory.google.com/example/test.php

directory.google.com/example/

directory.google.com/

google.com/example/test.php?key=value&one=1

google.com/example/test.php

google.com/example/
google.com/

The resulting URLs must be checked in the database.

Canonicalization in the context of the url2cat library

One of the ways to get URL categories is to use the local database provided by SafeDNS. This
database is getting updates on a daily basis and therefore the database always contains actual
information about websites on the Internet. This database is currently supplied in sqlite3.

The database is provided in two sets: a binary file (sqlite3 base) and a patch (SQL constructions to
bring the existing sqlite3 database to the actual state).

Here is the source to download the database in a binary file:
https://url2cat.safedns.com/pubfilter/grandbase.db

Here is the source to download the database in patches:
https://url2cat.safedns.com/api/v1/update/<user_version>

Where <user_version> is the PRAGMA parameter of the current database version. Inside the
resulting patch, the first line indicates the new version of this parameter, and if it matches the
requested version, no update is required.

You can check the current version of the database (PRAGMA parameter user_version) using the
command:

The database can be updated by sending a GET request to the specified source with BASIC
authorization parameters.

The database contains two tables:

1. Table result
2. Table cat

The table result contains hashed URL entries and their categories.

Table scheme:

Local database

Updating the database

xxd -l 4 -s 60 grandbase.db

Database description

Table result

Name Data

domain_hash Hash of a domain

path_hash Hash of a path

cat_id Categories list

With a primary key on the fields domain_hash , path_hash .

The data in the cat_id field is stored as a blob array to standardize the enumerated type, where
each category is stored as an unsigned short.

The table cat contains a list of entries with category names and identifiers.
Depending on customer requirements, the SafeDNS Octo database can be supplied with a different
number of categories with more detailed categorization or unique category names.

Table scheme:

Name Data

locale localization identifier

cat_id category identifier

name category name

With a primary composite key locale , cat_id

Identifiers from the field cat_id of the "result" table are the foreign key to this table. The field
locale contains the localization identifier of the language in which is written the name of the
category in the name field.
The cat_id field contains the numerical category identifier, the cat_id data is not sequential. The
name field contains localized category names.

Table cat

Along with the source code of the library, a small sample project is supplied, designed to test the
functionality of the library. The source code of the project is in \liburl2cat\example

Also in this directory, you will find:

grandbase.db - sample of a SafeDNS database;
domains.csv - a file containing domains from the sample database
url2cat.ini - a configuration file that specifies credentials for access to downloading and
updating the database, updating paths, etc.

url2cat.ini file contains the following fields:

After configuration and assembly, the client file will appear in the /liburl2cat/build/bin directory.
Move the following files from \liburl2cat\example to this directory:

grandbase.db
url2cat.ini

The client uses the domains.csv file as the source of domains/URLs for verification. You can create
this file from the command line:

Example

cache_size=0

db_name=grandbase.db

db_update_host=url2cat.safedns.com

db_update_path=/api/v1/update

db_download_path=/pubfilter/grandbase.db

db_update_user=username

db_update_password=password

db_user_version=00000000

server_host=x.api.safedns.com

server_path=/domain

server_user=username

server_password=password

recat_host=www.safedns.ru

recat_path=/api/json/v2

recat_user=username

recat_password=password

To start the client, use ./clent command.

echo "facebook.com / /" >> domains.csv

When using the url2cat library, errors may occur as a result, for example, lack of Internet
connection, etc. Information about these errors can be found in the file
/liburl2cat/include/url2cat.h

Error Information

	SUCCESS = 0x0000,

	/***/

	CACHE_URL_NOT_FOUND = 0x0001,

	DB_URL_NOT_FOUND = 0x0002,

	SERVER_URL_NOT_FOUND = 0x0003,

	URL_END_CHECK = 0x0004,

	DB_IS_BEING_UPDATED = 0x0005,

	WARNING = 0x1000,

	/***/

	INIT_REPEATED = 0x1001,

	INIT_DB_NAME_EMPTY = 0x1002,

	INIT_DB_UPDATE_HOST_EMPTY = 0x1003,

	INIT_DB_UPDATE_PATH_EMPTY = 0x1004,

	INIT_DB_DOWNLOAD_PATH_EMPTY = 0x1005,

	INIT_DB_UPDATE_USER_EMPTY = 0x1006,

	INIT_DB_UPDATE_PASSWORD_EMPTY = 0x1007,

	INIT_SERVER_HOST_EMPTY = 0x1008,

	INIT_SERVER_PATH_EMPTY = 0x1009,

	INIT_SERVER_USER_EMPTY = 0x100A,

	INIT_SERVER_PASSWORD_EMPTY = 0x100B,

	INIT_RECAT_HOST_EMPTY = 0x100D,

	INIT_RECAT_PATH_EMPTY = 0x100E,

	INIT_RECAT_USER_EMPTY = 0x100F,

	INIT_RECAT_PASSWORD_EMPTY = 0x1010,

	LOCALE_MALLOC_NULL = 0x1011,

	COMMON_BASE64_LEN = 0x1012,

	COMMON_BASE64_MALLOC_NULL = 0x1013,

	CACHE_SIZE_LIMITE = 0x1014,

	CACHE_BUFFER_MALLOC_NULL = 0x1015,

	CACHE_URL_NO_PATH = 0x1016,

	RECAT_HEADER_MALLOC = 0x1017,

	RECAT_CONTENT_MALLOC = 0x1018,

	RECAT_REQUEST_MALLOC = 0x1019,

	RECAT_PARSER_ANSWER = 0x101A,

	RECAT_REQUEST_WRITE = 0x101B,

	RECAT_READ_ANSWER = 0x101C,

	URL_INCORRECT = 0x101D,

	CATEGORY_ARRAY_NULL = 0x101E,

	READ_INI_NOT_OPEN_FILE = 0x101F,

	READ_INI_CALLOC_OPTIONS = 0x1020,

	READ_INI_RECALLOC_OPTIONS = 0x1021,

	READ_INI_NOT_OPTION = 0x1022,

	READ_INI_NOT_STREAM = 0x1023,

	READ_INI_MALLOC_BUFF = 0x1024,

	READ_INI_OPTIONS = 0x1025,

	/***/

	CANON_BUFFER_MALLOC_NULL = 0x2001,

	CANON_BUFFER_MALLOC_REPEAT = 0x2002,

	CANON_BUFFER_REALLOC_NULL = 0x2003,

	CANON_CHAR_HEX_UP = 0x2005,

	CANON_CHAR_HEX_LOW = 0x2006,

	CANON_PATH_SLASH_DOT_DOT = 0x2007,

	/***/

	DB_OPEN = 0x3001,

	DB_JOURNAL_MODE = 0x3002,

	DB_TEMP_STORE = 0x3003,

	DB_SYNCHRONOUS = 0x3004,

	DB_LOCKING_MODE = 0x3005,

	DB_QUERY_CATEGORY_NAME_PREPARE = 0x3006,

	DB_QUERY_CATEGORY_NAME_STEP = 0x3007,

	DB_QUERY_CATEGORY_NAME_NOT_ROW = 0x3008,

	DB_QUERY_CATEGORY_NAME_TYPE = 0x3009,

	DB_QUERY_CATEGORY_NAME = 0x300A,

	DB_QUERY_USER_VERSION_GET_PREPARE = 0x300B,

	DB_QUERY_USER_VERSION_GET_STEP = 0x300C,

	DB_USER_VERSION_GET = 0x300D,

	DB_QUERY_USER_VERSION_SET_PREPARE = 0x300E,

	DB_QUERY_USER_VERSION_SET_STEP = 0x300F,

	DB_USER_VERSION_SET = 0x3010,

	DB_REQUEST_UPDATE_HEAD_MALLOC_NULL = 0x3011,

	DB_REQUEST_UPDATE_FULL_MALLOC_NULL = 0x3012,

	DB_REQUEST_DOWNLOAD_HEAD_MALLOC_NULL = 0x3013,

	DB_REQUEST_DOWNLOAD_FULL_MALLOC_NULL = 0x3014,

	DB_PARSE_ANSWER_NOT_OK = 0x3015,

	DB_PARSE_ANSWER_NOT_CONTENT_RANGE = 0x3016,

	DB_PARSE_ANSWER_NOT_END_HEAD = 0x3017,

	DB_PARSE_ANSWER_NOT_LENGTH = 0x3018,

	DB_UPDATE_NOT_MAGIC_STR_HEAD = 0x3019,

	DB_UPDATE_NOT_USER_VERSION_HEAD = 0x301A,

	DB_DOWNLOAD_NOT_MAGIC_STR_HEAD = 0x301B,

	DB_FILE_RENAME = 0x301C,

	DB_DOWNLOAD_FILE_NOT_CREAT = 0x301D,

	DB_DOWNLOAD_FILE_NOT_FS_STAT = 0x301E,

	DB_DOWNLOAD_FILE_NOT_SPACE_DEVICE = 0x301F,

	DB_DOWNLOAD_FILE_NOT_FULL = 0x3020,

	DB_DOWNLOAD_FILE_NOT_WRITE = 0x3021,

	DB_DOWNLOAD_FILE_NOT_MMAP = 0x3022,

	DB_DOWNLOAD_FILE_READ = 0x3023,

	DB_QUERY_APPLY_PATCH_PREPARE = 0x3024,

	DB_QUERY_APPLY_PATCH_STEP = 0x3025,

	DB_QUERY_APPLY_PATCH_NOT_DONE = 0x3026,

	DB_APPLY_PATCH_NOT_MAGIC_STR = 0x3027,

	DB_APPLY_PATCH_NOT_USER_VERSION = 0x3028,

	DB_APPLY_PATCH_MISTMACH_USER_VERSION = 0x3029,

	DB_APPLY_PATCH_NOT_END_ROW = 0x302A,

	DB_UPDATE_HEADER_WRITE = 0x302B,

	DB_UPDATE_HEADER_READ = 0x302C,

	DB_UPDATE_FULL_WRITE = 0x302D,

	DB_UPDATE_FULL_READ = 0x302E,

	DB_DOWNLOAD_HEADER_WRITE = 0x302F,

	DB_DOWNLOAD_HEADER_READ = 0x3030,

	DB_DOWNLOAD_FULL_WRITE = 0x3031,

	DB_DOWNLOAD_FULL_READ = 0x3032,

	DB_QUERY_CATEGORY_MALLOC_NULL = 0x3033,

	DB_QUERY_CATEGORY_PREPARE = 0x3034,

	DB_QUERY_CATEGORY_STEP = 0x3035,

	DB_QUERY_CATEGORU_NOT_ROW = 0x3036,

	DB_URL_NO_PATH = 0x3037,

	/***/

	SERVER_REQUEST_GET_PATH_MALLOC_NULL = 0x4001,

	SERVER_REQUEST_GET_PATH_REALLOC_NULL = 0x4002,

	SERVER_REQUEST_HOST_MALLOC_NULL = 0x4003,

	SERVER_REQUEST_BUFFER_MALLOC_NULL = 0x4004,

	SERVER_ANSWER_BUFFER_MALLOC_NULL = 0x4005,

	SERVER_ANSWER_NOT_OK = 0x4006,

	SERVER_ANSWER_NOT_CATEGORY_TYPE = 0x4007,

	SERVER_ANSWER_NOT_CATEGORY_TYPE_NAME = 0x4008,

	SERVER_ANSWER_NOT_CATEGORY_TYPE_BRACKET = 0x4009,

	SERVER_ANSWER_NOT_CATEGORY_TYPE_NAME_BRACKET = 0x400A,

	SERVER_ANSWER_NOT_CATEGORY_TYPE_INT = 0x400B,

	SERVER_CATEGORY_NOT_CONNECT = 0x400C,

	SERVER_CATEGORY_HOST_WRITE = 0x400D,

	SERVER_CATEGORY_HOST_READ = 0x400E,

	SERVER_INIT_REPEAT = 0x400F,

	/***/

	NET_HTTPS_NOT_CONNECT = 0x5001,

	NET_SCHEME_NOT_SUPPORT = 0x5002,

	NET_HOST_PORT_MALLOC_NULL = 0x5003,

	NET_CONNECT_FAILURE = 0x5004,

	NET_WRITE_FAILURE = 0x5005,

	NET_READ_FAILURE = 0x5006,

	NET_CHECK_CONNECT_FAILURE = 0x5007,

	NET_SSL_CONF_CTX_finish = 0x5008,

	NET_SSL_BIO_get_ssl = 0x5009,

	NET_SSL_BIO_do_connect = 0x500A,

	NET_SSL_BIO_do_handshake = 0x500B,

